114 research outputs found

    Gaze-based teleprosthetic enables intuitive continuous control of complex robot arm use: Writing & drawing

    Get PDF
    Eye tracking is a powerful mean for assistive technologies for people with movement disorders, paralysis and amputees. We present a highly intuitive eye tracking-controlled robot arm operating in 3-dimensional space based on the user's gaze target point that enables tele-writing and drawing. The usability and intuitive usage was assessed by a “tele” writing experiment with 8 subjects that learned to operate the system within minutes of first time use. These subjects were naive to the system and the task and had to write three letters on a white board with a white board pen attached to the robot arm's endpoint. The instructions are to imagine they were writing text with the pen and look where the pen would be going, they had to write the letters as fast and as accurate as possible, given a letter size template. Subjects were able to perform the task with facility and accuracy, and movements of the arm did not interfere with subjects ability to control their visual attention so as to enable smooth writing. On the basis of five consecutive trials there was a significant decrease in the total time used and the total number of commands sent to move the robot arm from the first to the second trial but no further improvement thereafter, suggesting that within writing 6 letters subjects had mastered the ability to control the system. Our work demonstrates that eye tracking is a powerful means to control robot arms in closed-loop and real-time, outperforming other invasive and non-invasive approaches to Brain-Machine-Interfaces in terms of calibration time (<;2 minutes), training time (<;10 minutes), interface technology costs. We suggests that gaze-based decoding of action intention may well become one of the most efficient ways to interface with robotic actuators - i.e. Brain-Robot-Interfaces - and become useful beyond paralysed and amputee users also for the general teleoperation of robotic and exoskeleton in human augmentation

    Dot-to-Dot: Explainable Hierarchical Reinforcement Learning for Robotic Manipulation

    Full text link
    Robotic systems are ever more capable of automation and fulfilment of complex tasks, particularly with reliance on recent advances in intelligent systems, deep learning and artificial intelligence. However, as robots and humans come closer in their interactions, the matter of interpretability, or explainability of robot decision-making processes for the human grows in importance. A successful interaction and collaboration will only take place through mutual understanding of underlying representations of the environment and the task at hand. This is currently a challenge in deep learning systems. We present a hierarchical deep reinforcement learning system, consisting of a low-level agent handling the large actions/states space of a robotic system efficiently, by following the directives of a high-level agent which is learning the high-level dynamics of the environment and task. This high-level agent forms a representation of the world and task at hand that is interpretable for a human operator. The method, which we call Dot-to-Dot, is tested on a MuJoCo-based model of the Fetch Robotics Manipulator, as well as a Shadow Hand, to test its performance. Results show efficient learning of complex actions/states spaces by the low-level agent, and an interpretable representation of the task and decision-making process learned by the high-level agent

    Physics-informed reinforcement learning via probabilistic co-adjustment functions

    Full text link
    Reinforcement learning of real-world tasks is very data inefficient, and extensive simulation-based modelling has become the dominant approach for training systems. However, in human-robot interaction and many other real-world settings, there is no appropriate one-model-for-all due to differences in individual instances of the system (e.g. different people) or necessary oversimplifications in the simulation models. This requires two approaches: 1. either learning the individual system's dynamics approximately from data which requires data-intensive training or 2. using a complete digital twin of the instances, which may not be realisable in many cases. We introduce two approaches: co-kriging adjustments (CKA) and ridge regression adjustment (RRA) as novel ways to combine the advantages of both approaches. Our adjustment methods are based on an auto-regressive AR1 co-kriging model that we integrate with GP priors. This yield a data- and simulation-efficient way of using simplistic simulation models (e.g., simple two-link model) and rapidly adapting them to individual instances (e.g., biomechanics of individual people). Using CKA and RRA, we obtain more accurate uncertainty quantification of the entire system's dynamics than pure GP-based and AR1 methods. We demonstrate the efficiency of co-kriging adjustment with an interpretable reinforcement learning control example, learning to control a biomechanical human arm using only a two-link arm simulation model (offline part) and CKA derived from a small amount of interaction data (on-the-fly online). Our method unlocks an efficient and uncertainty-aware way to implement reinforcement learning methods in real world complex systems for which only imperfect simulation models exist

    Federated deep transfer learning for EEG decoding using multiple BCI tasks

    Full text link
    Deep learning has been successful in BCI decoding. However, it is very data-hungry and requires pooling data from multiple sources. EEG data from various sources decrease the decoding performance due to negative transfer. Recently, transfer learning for EEG decoding has been suggested as a remedy and become subject to recent BCI competitions (e.g. BEETL), but there are two complications in combining data from many subjects. First, privacy is not protected as highly personal brain data needs to be shared (and copied across increasingly tight information governance boundaries). Moreover, BCI data are collected from different sources and are often based on different BCI tasks, which has been thought to limit their reusability. Here, we demonstrate a federated deep transfer learning technique, the Multi-dataset Federated Separate-Common-Separate Network (MF-SCSN) based on our previous work of SCSN, which integrates privacy-preserving properties into deep transfer learning to utilise data sets with different tasks. This framework trains a BCI decoder using different source data sets obtained from different imagery tasks (e.g. some data sets with hands and feet, vs others with single hands and tongue, etc). Therefore, by introducing privacy-preserving transfer learning techniques, we unlock the reusability and scalability of existing BCI data sets. We evaluated our federated transfer learning method on the NeurIPS 2021 BEETL competition BCI task. The proposed architecture outperformed the baseline decoder by 3%. Moreover, compared with the baseline and other transfer learning algorithms, our method protects the privacy of the brain data from different data centres.Comment: 4 pages, 3 figure
    corecore